Search results for "Bounded variation"

showing 10 items of 25 documents

Closure properties for integral problems driven by regulated functions via convergence results

2018

Abstract In this paper we give necessary and sufficient conditions for the convergence of Kurzweil–Stieltjes integrals with respect to regulated functions, using the notion of asymptotical equiintegrability. One thus generalizes several well-known convergence theorems. As applications, we provide existence and closure results for integral problems driven by regulated functions, both in single- and set-valued cases. In the particular setting of bounded variation functions driving the equations, we get features of the solution set of measure integrals problems.

Applied Mathematics010102 general mathematicsClosure (topology)Solution set01 natural sciencesMeasure (mathematics)010101 applied mathematicsSettore MAT/05 - Analisi MatematicaConvergence (routing)Bounded variationApplied mathematics0101 mathematicsconvergence Kurzweil-Steltjes integral measure integral equation regulated function bounded variationAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

A Structural Theorem for Metric Space Valued Mappings of Φ-bounded Variation

2009

In this paper we introduce the notion of $\Phi$-bounded variation for metric space valued mappings defined on a subset of the real line. Such a notion generalizes the one for real functions introduced by M. Schramm, and many previous generalized variations. We prove a structural theorem for mappings of $\Phi$-bounded variation. As an application we show that each mapping of $\Phi$-bounded variation defined on a subset of $\mathbb{R}$ possesses a $\Phi$-variation preserving extension to the whole real line.

Discrete mathematicsInjective metric spaceextensionstructural theoremTotally bounded space54C35$\Phi$-bounded variation54E35Intrinsic metricmetric space valued mapings variation $Phi$-variation extension structural theorem.metric space valued mappingsUniform normSettore MAT/05 - Analisi MatematicaBounded functionBounded variationGeometry and Topologyvariation26A45Metric differentialReal lineAnalysisMathematics
researchProduct

Geometric Properties of Planar BV -Extension Domains

2009

We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.

Discrete mathematicsQuasiconformal mappingMathematics::Analysis of PDEsGeometric propertySobolev spaceQuasiconvex functionExtension domains; Sobolev spaces; Functions with bounded variationPlanarSobolev spacesFunctions with bounded variationBounded functionSimply connected spaceInvariant (mathematics)Extension domainsMathematics
researchProduct

A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces

2018

In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.

Discrete mathematicsfine Newton–Sobolev spaceProperty (philosophy)General Mathematicsta111010102 general mathematicsOpen setfine topologystrict quasicoveringType (model theory)function of bounded variationmetriset avaruudet01 natural sciencesMeasure (mathematics)Complete metric spaceCartan propertyfunktioteoria010101 applied mathematicsMetric spacemetric measure spacepotentiaaliteoria0101 mathematicsFine topologyMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

On the integration of Riemann-measurable vector-valued functions

2016

We confine our attention to convergence theorems and descriptive relationships within some subclasses of Riemann-measurable vector-valued functions that are based on the various generalizations of the Riemann definition of an integral.

Dominated convergence theoremRiemann-measurable functionPure mathematicsMeasurable functionGeneral Mathematics02 engineering and technologyLebesgue measurable gaugeLebesgue integration01 natural sciencessymbols.namesakeConvergence (routing)0202 electrical engineering electronic engineering information engineeringCalculusMathematics (all)0101 mathematicsMathematicsBirkhoff McShane Henstock and Pettis integralMathematics::Complex Variables010102 general mathematicsRiemann integralRiemann hypothesisBounded variationBounded variationAlmost uniform convergencesymbols020201 artificial intelligence & image processingVector-valued function$$ACG_*$$ACG∗and $$ACG_delta ^*$$ACGδ∗functionMonatshefte für Mathematik
researchProduct

Bounded solutions to the 1-Laplacian equation with a critical gradient term

2012

General MathematicsBounded functionMathematical analysisLaplace operator1-laplacian; degenerate elliptic equations; functions of bounded variations; gradient term with natural growthMathematicsTerm (time)Asymptotic Analysis
researchProduct

Dimensional reduction for energies with linear growth involving the bending moment

2008

A $\Gamma$-convergence analysis is used to perform a 3D-2D dimension reduction of variational problems with linear growth. The adopted scaling gives rise to a nonlinear membrane model which, because of the presence of higher order external loadings inducing a bending moment, may depend on the average in the transverse direction of a Cosserat vector field, as well as on the deformation of the mid-plane. The assumption of linear growth on the energy leads to an asymptotic analysis in the spaces of measures and of functions with bounded variation.

Mathematics(all)Asymptotic analysis49J45 49Q20 74K35dimension reductionGeneral Mathematics01 natural sciencesMathematics - Analysis of PDEsTangent measures; bending moments; dimension reductionFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingFunctions of bounded variationMathematicsDeformation (mechanics)Applied Mathematics010102 general mathematicsMathematical analysisTangent measures010101 applied mathematicsNonlinear systemΓ-convergenceDimensional reductionBounded variationBending momentbending momentsVector fieldMSC: 49J45; 49Q20; 74K35Analysis of PDEs (math.AP)
researchProduct

Fine properties of functions with bounded variation in Carnot-Carathéodory spaces

2019

Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.

Pure mathematicsApplied Mathematics010102 general mathematicsvariaatiolaskentaCarnot-Carathéodory spaces; Functions with bounded variationType (model theory)Classification of discontinuitiesSpace (mathematics)01 natural sciencesdifferentiaaligeometria010101 applied mathematicsDiscontinuity (linguistics)Functions with bounded variationBounded variationCarnot-Carathéodory spacesJumpAlmost everywheremittateoriaDifferentiable function0101 mathematicsfunctions with bounded variationfunktiotAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

On the Minimal Solution of the Problem of Primitives

2000

Abstract We characterize the primitives of the minimal extension of the Lebesgue integral which also integrates the derivatives of differentiable functions (called the C -integral). Then we prove that each BV function is a multiplier for the C -integral and that the product of a derivative and a BV function is a derivative modulo a Lebesgue integrable function having arbitrarily small L 1 -norm.

Pure mathematicsApplied MathematicsModuloMathematical analysisRiemann integralLebesgue integrationWeak derivativeMultiplier (Fourier analysis)symbols.namesakeBounded variationsymbolsLocally integrable functionDifferentiable functionAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct