Search results for "Bounded variation"
showing 10 items of 25 documents
Closure properties for integral problems driven by regulated functions via convergence results
2018
Abstract In this paper we give necessary and sufficient conditions for the convergence of Kurzweil–Stieltjes integrals with respect to regulated functions, using the notion of asymptotical equiintegrability. One thus generalizes several well-known convergence theorems. As applications, we provide existence and closure results for integral problems driven by regulated functions, both in single- and set-valued cases. In the particular setting of bounded variation functions driving the equations, we get features of the solution set of measure integrals problems.
Nonlinear diffusion in transparent media: the resolvent equation
2017
Abstract We consider the partial differential equation u - f = div ( u m ∇ u | ∇ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.
A Structural Theorem for Metric Space Valued Mappings of Φ-bounded Variation
2009
In this paper we introduce the notion of $\Phi$-bounded variation for metric space valued mappings defined on a subset of the real line. Such a notion generalizes the one for real functions introduced by M. Schramm, and many previous generalized variations. We prove a structural theorem for mappings of $\Phi$-bounded variation. As an application we show that each mapping of $\Phi$-bounded variation defined on a subset of $\mathbb{R}$ possesses a $\Phi$-variation preserving extension to the whole real line.
Geometric Properties of Planar BV -Extension Domains
2009
We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.
A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces
2018
In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.
On the integration of Riemann-measurable vector-valued functions
2016
We confine our attention to convergence theorems and descriptive relationships within some subclasses of Riemann-measurable vector-valued functions that are based on the various generalizations of the Riemann definition of an integral.
Bounded solutions to the 1-Laplacian equation with a critical gradient term
2012
Dimensional reduction for energies with linear growth involving the bending moment
2008
A $\Gamma$-convergence analysis is used to perform a 3D-2D dimension reduction of variational problems with linear growth. The adopted scaling gives rise to a nonlinear membrane model which, because of the presence of higher order external loadings inducing a bending moment, may depend on the average in the transverse direction of a Cosserat vector field, as well as on the deformation of the mid-plane. The assumption of linear growth on the energy leads to an asymptotic analysis in the spaces of measures and of functions with bounded variation.
Fine properties of functions with bounded variation in Carnot-Carathéodory spaces
2019
Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.
On the Minimal Solution of the Problem of Primitives
2000
Abstract We characterize the primitives of the minimal extension of the Lebesgue integral which also integrates the derivatives of differentiable functions (called the C -integral). Then we prove that each BV function is a multiplier for the C -integral and that the product of a derivative and a BV function is a derivative modulo a Lebesgue integrable function having arbitrarily small L 1 -norm.